ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Jiangang Yu, Wenjia Han, Ziwei Lian, Kaigui Zhu
Fusion Science and Technology | Volume 73 | Number 1 | January 2018 | Pages 5-12
Technical Paper | doi.org/10.1080/15361055.2017.1372680
Articles are hosted by Taylor and Francis Online.
In this work, polycrystalline tungsten prepared by powder sintering and naonocrystalline tungsten film deposited by magnetron sputtering were simultaneously exposed to deuterium plasma with energy of 78 eV and fluence of 3.9 × 1024 m−2 at 450 K. The morphologies of both samples before and after deuterium plasma exposure were measured by scanning electron microscopy. Then, the deuterium retention of both samples was determined by thermal desorption spectroscopy. After irradiation, a few blisters were observed on polycrystalline tungsten, but no sign of surface modification was detected on nanocrystalline tungsten film. In addition, the deuterium retention is higher in nanocrystalline tungsten film than in polycrystalline tungsten. The fact that nanocrystalline tungsten film deposited by magnetron sputtering has a larger density of grain boundaries and native defects are responsible for no blistering and high retention in comparison with the polycrystalline tungsten.