ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Jonathan E. Kinsey, Gary M. Staebler, Ronald E. Waltz
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 763-775
Technical Paper | doi.org/10.13182/FST03-A414
Articles are hosted by Taylor and Francis Online.
Fusion power predictions are presented using the GLF23 drift-wave transport model for several next-step tokamak designs including ITER, FIRE, and IGNITOR. The GLF23 model has been renormalized using recent gyrokinetic simulations and a database of nearly 50 H-mode discharges from three different tokamaks. The renormalization reduces the ion temperature gradient/trapped electron mode (ITG/TEM)-driven transport by a factor of 3.7 while electron temperature gradient (ETG) mode transport is increased by a factor of 4.8 with respect to the original model. Using the renormed model, the fusion power performance is uniformly assessed, and the pedestal requirements are summarized for each device. The renormed model is still quite stiff and yields somewhat more optimistic predictions for next-step burning plasma experiments. The consequences of stiff transport in the plasma core are discussed. A fusion fit formula is derived whereby the GLF23 results follow a universal stiff model curve for the normalized fusion power versus pedestal temperature.