ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Andrea M. Garofalo
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 756-762
Technical Paper | doi.org/10.13182/FST44-756
Articles are hosted by Taylor and Francis Online.
A simple model is used to analyze the systems for feedback stabilization of the resistive wall mode (RWM) in proposed burning plasma experiments. In ITER, the presence of several conducting structures close to the control coils, but far from the plasma, leads to a slow feedback response time compared to the time scale of the RWM growth. In FIRE, the copper shell passive stabilizer sets a relatively long time scale for the RWM growth; therefore, the effects of higher resistivity structures close to the coils and far from the plasma are nearly negligible. RWM feedback control should be able to raise the stable N up to near the ideal-wall limit in FIRE with moderate requirements on the feedback electronics bandwidth.