ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
D. N. Bittner, G. W. Collins, J. D. Sater
Fusion Science and Technology | Volume 44 | Number 4 | December 2003 | Pages 749-755
Technical Paper | doi.org/10.13182/FST03-A412
Articles are hosted by Taylor and Francis Online.
Cryogenic targets for the National Ignition Facility require uniform solid layers inside spherical capsules at temperatures ~1.5 K below the triple point of hydrogen. Uniform layers have been successfully formed near the triple point. However, upon subsequent cooling the layers degrade. We report here recent attempts to form uniform deuterium hydride (HD) layers 1.5 K below the triple point using infrared (IR) radiation. Pumping the IR collisionally induced vibration-rotation band of solid HD contained inside a transparent plastic shell generates a volumetric heat source in the HD lattice. This in turn allows the formation of a spherical crystalline shell of HD inside the transparent plastic shell. HD layers ~50 m thick have been formed near the triple point and slowly cooled 1.5 K under high IR power without layer degradation.