ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Koji Kusumi, Tomoaki Kunugi, Takehiko Yokomine, Zensaku Kawara, Egemen Kolemen, Hantao Ji, Erik P. Gilson
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 796-800
Technical Note | doi.org/10.1080/15361055.2017.1347457
Articles are hosted by Taylor and Francis Online.
In this study, the mixing of temperature-stratified liquid metal free-surface flow by a delta-wing obstacle installed on the channel bottom has been experimentally and numerically investigated in the presence of a transverse magnetic field. The surface temperature distribution of the channel was measured by using 25 thermocouples (TCs) embedded in the channel bottom, downstream of the obstacle, which was located upstream of the heater installed at the free-surface. The experiments were conducted for the turbulent flow region where Re = 12,000 and in the range of N = 0–5.02 in the presence of the transverse magnetic field. As for the laminar flow region, it is difficult to carry out the experiment, so the numerical simulations were conducted using Re = 2,300 and in the range of N = 0–10. According to the comparison of numerical results with and without the delta-wing obstacle in laminar flow region, the entire temperature distribution with the obstacle was warmer than that without the obstacle. This was consistent with the expectation that a delta-wing obstacle would increase thermal mixing.