ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Shodai Sakurada, Yuki Uemura, Hiroe Fujita, Keisuke Azuma, Takeshi Toyama, Naoaki Yoshida, Tatsuya Hinoki, Sosuke Kondo, Yuji Hatano, Masashi Shimada, Dean Buchenauer, Takumi Chikada, Yasuhisa Oya
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 785-788
Technical Note | doi.org/10.1080/15361055.2017.1350480
Articles are hosted by Taylor and Francis Online.
The annealing effects on deuterium (D) retention for 0.1–1.0 dpa iron (Fe) ion damaged W were studied as a function of annealing duration. The D2 spectra for Fe damaged W with lower defect concentration showed that D trapped by vacancy clusters was clearly decreased as increasing annealing duration due to the recovery of vacancy clusters. On the other hand, at higher defect concentration, the desorption peak of D trapped by voids was shifted toward higher temperature side, which would be caused by aggregation of vacancies and vacancy clusters. It can be said that the recovery and aggregation behavior of defects are controlled by defect concentration. By disappearing of desorption of D trapped by vacancy clusters after annealing for longer duration, the desorption of D trapped by vacancies was increased, which could be explained by following two possibilities. One is that the retention of hydrogen isotope trapped by monovacancy was increased. The other is that number of vacancies during annihilation process of vacancy cluster were formed by annealing.