ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Yu. Igitkhanov, Ch. Day, P. Lang, B. Plöckl
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 780-784
Technical Note | doi.org/10.1080/15361055.2017.1347465
Articles are hosted by Taylor and Francis Online.
We analyze requirements on the particle throughput inside the torus, posed by the different physics processes during the DEMO inductive operation needed for tritium plant fuel processing, pumping and fueling systems design. Unlike ITER in DEMO limitations posed by pumping and tritium plant systems are expected to be more moderate because of employing advanced solutions. However, the requirements on the particle throughput posed by plasma processes in DEMO are found to be more demanding and the way of their reduction by bypassing, recycling etc. to be mandatory.