ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
M. Zucchetti, M. Riva, R. Testoni, L. Candido, B. Coppi
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 731-736
Technical Note | doi.org/10.1080/15361055.2017.1347462
Articles are hosted by Taylor and Francis Online.
CANDOR is a high-field advanced fusion fuel cycle experiment based on Ignitor, but with larger dimensions and higher fusion power: it is a feasibility study of a high-field Deuterium-Helium-3 (D3He) experiment of larger dimensions and higher fusion power than Ignitor, still based on the core Ignitor technologies. Results of investigations on the feasibility of D3He burning and side neutrons production in D3He plasmas and specifically in CANDOR show that, with the initial use of DT triggering, the need for an intense auxiliary heating would be considerably alleviated. The total released 14 MeV neutron energy during the 16-second burning sums to about 210 MJ. DT and DD neutron currents incoming in the CANDOR plasma chamber wall and the Neutron Wall Loads have been computed. D3He ignition could be studied in CANDOR, with modest and conservative developments of the present technology. CANDOR has a low neutron wall loading, softer neutron spectrum, low radiation damage, and - consequently - lower neutron induced activation and radioactive inventory.