ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Matthew J. Jasica, Gerald L. Kulcinski, John F. Santarius
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 719-725
Technical Note | doi.org/10.1080/15361055.2017.1350482
Articles are hosted by Taylor and Francis Online.
A new experimental facility at the University of Wisconsin-Madison, the Dual-Advanced Ion Simultaneous Implantation Experiment (DAISIE), has been designed and constructed to examine tungsten surface damage phenomena. These include microstructure formation and erosion due to helium bombardment as well as the retention of hydrogen gas while under the simultaneous bombardment of helium and deuterium ion beams, as would occur in ITER or other deuterium-burning fusion devices. DAISIE features two ion guns angled at 55° to the sample normal. These guns are independent with respect to beam current, allowing for a high degree of control over the separate D and He beams fluxes and fluences and the composition ratio of these ions impinging upon the tungsten sample surface. Preliminary results are available for helium-only implantations at energies of 30 keV to average fluences of 3 × 1018 He/cm2 in tungsten samples at temperatures of 900°C. As in prior experiments, surface damage appears to be highly-dependent on the crystallography of the individual grains. although a distinct set of helium-induced microstructures from past experiments is observed. Erosion yield is consistent with prior, similar helium irradiation experiments at the University of Wisconsin, but exceeds that predicted by physical sputtering yields and other past sputtering experiments.