ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
A review of workforce trends in the nuclear community
The nuclear community is undergoing a moment of unprecedented interest and growth not seen in decades. The passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act are providing a multitude of new funding opportunities for the nuclear community, and not just the current fleet. A mix of technologies and reactor types are being evaluated and deployed, with Vogtle Units 3 and 4 coming on line later this year, the Advanced Reactor Demonstration Projects of X-energy and TerraPower, and NuScale’s work with Utah Associated Municipal Power Systems to build a first-of-a-kind small modular reactor, making this is an exciting time to join the nuclear workforce.
Kio Takai, Yoshiki Indou, Kazuhisa Yuki, Koichi Suzuki, Akio Sagara
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 699-704
Technical Note | doi.org/10.1080/15361055.2017.1352430
Articles are hosted by Taylor and Francis Online.
This study evaluates convective and boiling heat transfer characteristics of a water impinging jet flow in porous media in order to remove the heat flux of 10 MW/m2 imposed to fusion divertors. The metal porous media with complicated microchannels have large heat transfer surface due to fin effect and superior mixing effect of fluid, which enhances not only the convective heat transfer but also the boiling heat transfer by improving the evaporation rate of the cooling liquid. In a proposed heat removal device called EVAPORON-3-Type3, the cooling water is supplied as an impinging jet flow into the porous medium, which is a two-layered copper particle bed, and the generated vapor is discharged through high porosity gaps on the heat transfer surface. As a result, the convective heat transfer coefficient is improved by 1.6 times compared with that of an impinging jet flow without the copper particle bed. In the boiling heat transfer regime, the critical heat flux is increased by 1.5 times and the heat flux of 8.4 MW/m2 is achieved under low velocity and highly subcooled conditions though it’s not maximum.