ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Kio Takai, Yoshiki Indou, Kazuhisa Yuki, Koichi Suzuki, Akio Sagara
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 699-704
Technical Note | doi.org/10.1080/15361055.2017.1352430
Articles are hosted by Taylor and Francis Online.
This study evaluates convective and boiling heat transfer characteristics of a water impinging jet flow in porous media in order to remove the heat flux of 10 MW/m2 imposed to fusion divertors. The metal porous media with complicated microchannels have large heat transfer surface due to fin effect and superior mixing effect of fluid, which enhances not only the convective heat transfer but also the boiling heat transfer by improving the evaporation rate of the cooling liquid. In a proposed heat removal device called EVAPORON-3-Type3, the cooling water is supplied as an impinging jet flow into the porous medium, which is a two-layered copper particle bed, and the generated vapor is discharged through high porosity gaps on the heat transfer surface. As a result, the convective heat transfer coefficient is improved by 1.6 times compared with that of an impinging jet flow without the copper particle bed. In the boiling heat transfer regime, the critical heat flux is increased by 1.5 times and the heat flux of 8.4 MW/m2 is achieved under low velocity and highly subcooled conditions though it’s not maximum.