ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Haiying Fu, Takuya Nagasaka, Teruya Tanaka, Akio Sagara, Hisashi Serizawa, Yuhki Satou
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 680-685
Technical Note | doi.org/10.1080/15361055.2017.1347469
Articles are hosted by Taylor and Francis Online.
Dissimilar-metals joints between vanadium alloy NIFS-HEAT-2 (NH2) and nickel alloy Hastelloy X (HX) were developed by electron beam welding (EBW). If without filler, the joint fractured several minutes after the welding due to hard and brittle intermetallics formed in the weld metal (WM). Pure Ni filler with 0.2–1.0 mm in thickness decreased the content of intermetallics and eliminate hardening in the WM. However, there is always a hardening interlayer estimated as Ni2V and σ intermetallics, existed with thickness of 50 µm between NH2 base metal (BM) and WM. The hardening cannot be eliminated by annealing at high solution temperature of 1373 K. Aging at 723–973 K for 100 h further increased the hardening not only in the hardening interlayer but also in the WM. Pure Cu filler was also investigated. For the joint with 0.5 mm thick Cu filler, there are still hardening interlayer and hardening areas in the WM due to Ni2V and σ intermetallics. However, by increasing the Cu filler to 1 mm thick, the hardening interlayer disappeared by preventing mixture of NH2 and HX to form intermetallics. In this case, Charpy impact property of the joint with 1 mm thick Cu is much improved with ductile-to-brittle transition temperature (DBTT) less than 77 K. Even after thermal aging at 973 K for 100 h, the impact property did not degrade.