ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Shuhei Nogami, Wenhai Guan, Akira Hasegawa, Makoto Fukuda
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 673-679
Technical Note | doi.org/10.1080/15361055.2017.1347463
Articles are hosted by Taylor and Francis Online.
The thermal and fatigue properties and the irradiation hardening of the potassium (K) doped tungsten (W) rods (20 mm in diameter) developed for fusion reactor divertor applications were investigated, and they were compared with the conventional hot-rolled W plates, which were previously reported. A part of the fatigue life of conventional hot-rolled W plate was newly obtained in this work. The K-doped W rod showed a few percent lower thermal conductivity than the conventional hot-rolled W plates. However, those values may meet the requirements of the ITER divertor application. The fatigue life at 500°C of the K-doped W rod was similar to the pure W plates at higher strain, whereas longer fatigue life of the K-doped W rod was observed at lower strain. The recrystallized K-doped W rod showed longer fatigue life at 500°C than the recrystallized pure W plates. The irradiation hardening level of the K-doped W rod was similar to the pure W plate after the irradiation up to 3 dpa at 500°C. Based on these evaluations of this work, the K-doped W rod in this work has similar or better properties than the conventional hot-rolled W plates under these particular test conditions though further evaluation and producing larger rods are desirable for the actual design and fabrication of the divertor.