ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
C. Koehly, L. Bühler
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 660-666
Technical Note | doi.org/10.1080/15361055.2017.1350477
Articles are hosted by Taylor and Francis Online.
The dual-coolant lead lithium (DCLL) blanket in which the eutectic lead-lithium alloy is used as tritium breeder and coolant is a promising concept for applications in fusion power plants. The interaction of the moving electrically conducting liquid metal with the plasma-confining magnetic field induces electric currents and creates strong electromagnetic Lorentz forces opposing the flow. This may lead to high magnetohydrodynamic (MHD) pressure drops. Efficient cooling requires a sufficiently high flow velocity and, under these conditions, if currents find a shortcut through electrically conducting walls, the pressure drop will be very large. One way to reduce the MHD pressure drop in ducts is to decouple electrically the coolant flow from the load-carrying walls by insulating flow channel inserts (FCI). In order to demonstrate the capability of pressure drop reduction by FCIs in 3D MHD flow, a test section is currently being designed and manufactured for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology. The used FCIs are of sandwich-type with a ceramic layer protected from both sides by thin sheets of steel to prevent direct contact of the insulator with liquid metal. This technical note focuses on fabrication issues of sandwich-type flow channel inserts for circular pipes and shows methods and techniques for successful manufacturing.