ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
C. Koehly, L. Bühler
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 660-666
Technical Note | doi.org/10.1080/15361055.2017.1350477
Articles are hosted by Taylor and Francis Online.
The dual-coolant lead lithium (DCLL) blanket in which the eutectic lead-lithium alloy is used as tritium breeder and coolant is a promising concept for applications in fusion power plants. The interaction of the moving electrically conducting liquid metal with the plasma-confining magnetic field induces electric currents and creates strong electromagnetic Lorentz forces opposing the flow. This may lead to high magnetohydrodynamic (MHD) pressure drops. Efficient cooling requires a sufficiently high flow velocity and, under these conditions, if currents find a shortcut through electrically conducting walls, the pressure drop will be very large. One way to reduce the MHD pressure drop in ducts is to decouple electrically the coolant flow from the load-carrying walls by insulating flow channel inserts (FCI). In order to demonstrate the capability of pressure drop reduction by FCIs in 3D MHD flow, a test section is currently being designed and manufactured for experiments in the MEKKA laboratory at the Karlsruhe Institute of Technology. The used FCIs are of sandwich-type with a ceramic layer protected from both sides by thin sheets of steel to prevent direct contact of the insulator with liquid metal. This technical note focuses on fabrication issues of sandwich-type flow channel inserts for circular pipes and shows methods and techniques for successful manufacturing.