ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Masashi Shimada, Yasuhisa Oya, Dean A. Buchenauer, Yuji Hatano
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 652-659
Technical Paper | doi.org/10.1080/15361055.2017.1347468
Articles are hosted by Taylor and Francis Online.
Irradiation effects on heat-load and heat removal, thermo-mechanical properties, and tritium behavior in neutron-irradiated tungsten and tungsten alloy are being investigated under US-Japan PHENIX (Plasma facing components evaluation by tritium Plasma, HEat and Neutron Irradiation eXperiments) collaboration (2013–2018) to demonstrate feasibility and safety of helium-cooled divertor concept for a fusion demonstration (DEMO) and future fusion reactors. The PHENIX Task 3 is aimed at improved understanding of irradiation response on tritium retention and permeation in tungsten and tungsten alloys under divertor-relevant high-flux plasma for a Fusion Nuclear Science Facility (FNSF) and DEMO. This paper describes the challenge in elucidating tritium behavior in neutron-irradiated plasma facing components (PFCs), the PHENIX plans for neutron-irradiation and post irradiation examination, and progress in tritium behavior in neutron-irradiated tungsten.