ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
M. Smith, Y. Zhai, A. Jariwala, T. Edgemon, L. Konkel, M. Smiley, J. Vasquez, A. L. Verlaan, J. A. C. Heijmans
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 640-644
Technical Paper | doi.org/10.1080/15361055.2017.1352423
Articles are hosted by Taylor and Francis Online.
The Upper Visible Infrared Wide Angle Viewing System (UWAVS) is a diagnostic used in five upper ports of ITER. Each UWAVS provides visible and infrared views of various sections of the divertor. A single UWAVS is designed in three main sections: in-vessel, interspace and port cell assemblies. Each assembly utilizes multiple steering and relay mirrors to direct the in-vessel light out of the tokamak to the port cell camera sensors.
For the in-vessel components, the transient electro-magnetic (EM) environment resulting from the ITER magnet operation and plasma events induces design driving Lorentz forces. As such, all in-vessel systems require detailed electro-magnetic finite element analysis (FEA) to derive the resulting time dependent Lorentz loads.
ANSYS Maxwell software was used to perform transient electro-magnetic simulations of the UWAVS in ITER upper port 14. A 20 degree sector, cyclic symmetric model was employed and included, inner and outer vacuum vessel, blanket shield modules, diagnostic fist wall (DFW) and shield module (DSM), upper port plug structure, DSM shield blocks, and a detailed model of the UWAVS in-vessel assembly.
The resulting data includes eddy current density and vector plots along with force and moment summation for various UWAVS components. Front end optical components are specifically reported as these components have significant EM loads.