ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Joseph B. Tipton, Jr., Arnold Lumsdaine, Charles Schaich, Gregory R. Hanson
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 616-622
Technical Paper | doi.org/10.1080/15361055.2017.1350486
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system Transmission Lines (TL) require highly polished copper mirrors on miter bends (both 90° and 140°) to direct microwaves from their origin to the tokamak. This will result in substantial heat dissipation on the miter bends and mirrors and will require water cooling in order to achieve long pulse operation. Analysis and optimization of the cooling design for the 140° miter bend assembly used ANSYS® Multiphysics™ software to develop and verify the fluid, thermal, and structural behavior of the mirror and miter bend assembly. Simulation model choices included a thermo-mechanical model of the mirror-only, a thermo-mechanical model of the miter bend assembly, and a thermo-mechanical model of the mirror with coolant. These analyses revealed an optimal solution that uses a major-axis cooling channel configuration for the 140° miter bend to meet the design criteria (e.g. structural stresses, mirror deflection, vacuum seal, coolant temperatures and pressures).