ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Tim D. Bohm, Edward P. Marriott, Mohamed E. Sawan
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 595-600
Technical Paper | doi.org/10.1080/15361055.2017.1350484
Articles are hosted by Taylor and Francis Online.
The ITER vacuum vessel (VV) is a double walled toroidal shaped stainless steel structure divided into nine 40 degree sectors. In the design process for the ITER blanket system (which provides shielding for the VV), determining integrated nuclear heating loads on the VV is important for cooling system sizing and determining localized nuclear heating on the VV is important for assessing thermal stress loads. Further, determining radiation damage, displacements per atom (dpa) on the VV, is important in meeting pressure vessel limits. Near the neutral beam injection (NBI) region of the VV (both sector 2 and sector 3), there are significant gaps and cut-outs in the blanket system to accommodate the 3 heating neutral beam (HNB) ports and the diagnostic neutral beam (DNB) port. These features lead to higher localized radiation loads. Previous analysis indicated high nuclear heating and dpa in the NBI region. The CAD based DAG-MCNP5 transport code was used to perform neutronics calculations in detailed, updated CAD models of the NBI region. For this work, a 40 degree model of sector 2 (which includes the HNB1 port, the DNB port, and the HNB2 port) was analyzed. Three design options were investigated which add shielding in the DNB port region by using port liners. Mesh tally maps of both nuclear heating and dpa are provided for the VV in the BM13-16 region. Peak dpa values ranged from 0.41–0.65 dpa. Two of the 3 design options investigated had peak dpa values near the DNB port within the ITER dpa limit of 0.5 dpa. Peak nuclear heating results ranged from 1.7 W/cm3 to 2.0 W/cm3. The mesh tally maps of nuclear heating have been provided to the ITER Organization for subsequent finite element engineering analysis. Preliminary analysis has shown the thermal stress levels are unacceptable with the added shielding. The results of this work are being used by the ITER Blanket and Tokamak Integration groups to assess the current design and modify blanket module (BM) design where needed if radiation loads are excessive.