ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
J. R. Nicholas, P. T. Ireland, D. Hancock, D. Robertson
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 566-573
Technical Paper | doi.org/10.1080/15361055.2017.1350483
Articles are hosted by Taylor and Francis Online.
The necessity to handle heat loads in the MW/m2 range has become increasingly prevalent in a number of industries. Termed high-heat flux cooling, some of the most challenging conditions in this field occur at the first wall and divertor regions of a fusion tokamak. Steady-state heat fluxes here may reach values in excess of 10 MW/m2 in some areas for a first stage DEMO. The situation is exasperated further by the environment within the machine, which severely alters material properties with time. Even coolant choice itself can have an impact beyond thermal considerations through tritium inventory and neutron activation. Successfully addressing these issues is of critical importance to the development of commercial fusion power. A number of heat sink modules utilising jet impingement in a flat plate geometry were manufactured using diffusion bonding. Each sample produced was subject to leak and hydrostatic pressure measurements, together with further non-destructive analyses. Thermo-fluid measurements were performed on the components in a purpose built facility employing water as the coolant at pressures of up to 200 bar. To replicate the thermal boundary conditions a resistive thin-film heater technique was utilised. This allowed heat fluxes in the MW/m2 range to be applied to the modules. The results indicate that the concept may be a viable alternative heat sink candidate for first wall or divertor applications in a DEMO, but that further research is required to optimise certain aspects of the design.