ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Arkady Serikov, Ulrich Fischer, David Anthoine, Luciano Bertalot, Maarten De Bock, Richard O’Connor, Rafael Juarez, Vitaly Krasilnikov
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 559-565
Technical Paper | doi.org/10.1080/15361055.2017.1347470
Articles are hosted by Taylor and Francis Online.
This paper emphasizes the need of estimation of the mutual influence, called “cross-talk,” for neutronic analyses of neighboring diagnostics systems shared by the same ITER port. Using examples of several diagnostic systems inserted inside the ITER Equatorial and Upper Port Plugs, we have demonstrated this mutual influence. Cross-talk effects have been shown by examining the radiation environment inside the port plug in terms of neutron energy spectra and Shut-Down Dose Rate (SDDR) inside the Port Interspace (PI) area. In-port cross-talk was investigated for the diagnostic systems deployed in two Equatorial Port Plugs (EPP) #17 and #8, and for the components of Upper Port Plug (UPP) #3. One example of in-port cross-talks is a gamma shadow effect of the Tritium and Deposit Monitor (TDM) shield block, which affects the SDDR inside the PI of EPP#17. Where the gamma radiation originated from the dominant radioactive sources of the irradiated structures of Core-Imaging X-ray Spectrometer (CIXS) is blocked by the TDM shield. Another example is an influence of neutron streaming along the Fast Ion Loss Detector (FILD) channel on the neutron energy spectra calculated in the Tangential Neutron Spectrometer (TNS) in EPP#8. For the example of UPP#3 with Charge eXchange Recombination Spectroscopy (CXRS-core), performed neutronic analysis identified excessive neutron streaming along the CXRS shutter, which must be reduced by further design iterations.