ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
V. Bykov, J. Zhu, A. Carls, J. Fellinger, P. van Eeten, H.-S. Bosch, L. Wegener
Fusion Science and Technology | Volume 72 | Number 4 | November 2017 | Pages 546-558
Technical Paper | doi.org/10.1080/15361055.2017.1352427
Articles are hosted by Taylor and Francis Online.
The largest modular stellarator Wendelstein 7-X (W7-X) has successfully passed commissioning and first phase of operation in Greifswald, Germany. The limiter configurations of plasma with 2.5 T of magnetic induction on the plasma axis produce already considerable loads (MN) in the W7-X systems. The sophisticated W7-X superconducting magnet system with its non-linear support system is instrumented with an extensive set of mechanical and temperature sensors. Measurement results showed that magnet system behavior is in good correspondence with original predictions from numerical models. However, several areas require modeling improvements and/or proper adjustment of parameters to reflect “as-built” situation. Moreover, high temperature dependence of strain gauge signal accuracy in the range below 10 K requires its compensation in order to avoid fault alarms during monitoring. The work is considered as benchmarking of numerical models and as a preparation for upcoming more demanding phases with longer plasma pulses to guarantee safe and reliable W7-X operation with different divertor configurations. Both results of W7-X measurements and implemented improvements as well as lessons learned so far are also given.