ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Yang-Il Jung, Hyun-Gil Kim, Dong-Won Lee, Yoon-Soo Lim, Seungyon Cho
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 523-529
Technical Note | doi.org/10.1080/15361055.2017.1330610
Articles are hosted by Taylor and Francis Online.
Tungsten was joined to ferritic-martensitic steel (FMS) for application in a plasma facing component. Zirconium foil was investigated as an interlayer material for the joining of W to FMS. Repeated hot isostatic pressing (HIP) was conducted for the fabrication of W/FMS joints. The first HIP was performed at 950°C under 100 MPa for 1.5 h (diffusion joining stage), and the second HIP was executed at 750°C under 70 MPa for 2 h (tempering stage). The Zr interlayer formed a sound interface between W and FMS with no observable pores and cracks. The joining strength of W/FMS measured by a shear test was about 54 MPa. Elemental diffusion was observed along the hetero-interfaces of W/Zr and Zr/FMS. At the W/Zr interface, a thin layer of W–Zr inter-phase was observed. At the Zr/FMS interface, no intermetallic compound was formed, however, fine Zr grains featuring body-centered tetragonal lattice structures were formed near the interface.