ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
M. Harb, L. El-Guebaly, A. Davis, P. Wilson, E. Marriott, J. Benzaquen, FESS-FNSF Team
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 510-515
Technical Note | doi.org/10.1080/15361055.2017.1333846
Articles are hosted by Taylor and Francis Online.
Two issues related to neutronics analysis of fusion systems were addressed for the purpose of physical design iterations as well as plant operation: tritium self-sufficiency and shielding of the inboard magnet. State-of-the-art modeling/analysis tools facilitated a full 3-D neutronics analysis of the latest FESS-FNSF design. The first stage of the analysis involved the selection of materials for the first wall and blanket along with shielding materials to protect the magnet based on extensive 1-D analyses. The second stage is a stepwise workflow to estimate the overall tritium breeding ratio with high fidelity. It involved a bottom-up approach by coupling the CAD model with the 3-D MCNP code using DAGMC and adding the relevant design details in steps to assess the effect of such details on the tritium breeding ratio. The final stage involved calculations of the values of damage parameters at specific components: the first wall, the vacuum vessel, and magnet.