ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
M. Harb, L. El-Guebaly, A. Davis, P. Wilson, E. Marriott, J. Benzaquen, FESS-FNSF Team
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 510-515
Technical Note | doi.org/10.1080/15361055.2017.1333846
Articles are hosted by Taylor and Francis Online.
Two issues related to neutronics analysis of fusion systems were addressed for the purpose of physical design iterations as well as plant operation: tritium self-sufficiency and shielding of the inboard magnet. State-of-the-art modeling/analysis tools facilitated a full 3-D neutronics analysis of the latest FESS-FNSF design. The first stage of the analysis involved the selection of materials for the first wall and blanket along with shielding materials to protect the magnet based on extensive 1-D analyses. The second stage is a stepwise workflow to estimate the overall tritium breeding ratio with high fidelity. It involved a bottom-up approach by coupling the CAD model with the 3-D MCNP code using DAGMC and adding the relevant design details in steps to assess the effect of such details on the tritium breeding ratio. The final stage involved calculations of the values of damage parameters at specific components: the first wall, the vacuum vessel, and magnet.