ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. Harb, L. El-Guebaly, A. Davis, P. Wilson, E. Marriott, J. Benzaquen, FESS-FNSF Team
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 510-515
Technical Note | doi.org/10.1080/15361055.2017.1333846
Articles are hosted by Taylor and Francis Online.
Two issues related to neutronics analysis of fusion systems were addressed for the purpose of physical design iterations as well as plant operation: tritium self-sufficiency and shielding of the inboard magnet. State-of-the-art modeling/analysis tools facilitated a full 3-D neutronics analysis of the latest FESS-FNSF design. The first stage of the analysis involved the selection of materials for the first wall and blanket along with shielding materials to protect the magnet based on extensive 1-D analyses. The second stage is a stepwise workflow to estimate the overall tritium breeding ratio with high fidelity. It involved a bottom-up approach by coupling the CAD model with the 3-D MCNP code using DAGMC and adding the relevant design details in steps to assess the effect of such details on the tritium breeding ratio. The final stage involved calculations of the values of damage parameters at specific components: the first wall, the vacuum vessel, and magnet.