ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Ethan Coffey, Greg Hanson, David Hill, Timothy Jones, Arnold Lumsdaine, Claire Luttrell, Chuck Schaich
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 505-509
Technical Note | doi.org/10.1080/15361055.2017.1333857
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system provides 20 MW of microwave power from 24 gyrotron sources. The power is transmitted through evacuated, corrugated waveguide transmission lines. The aluminum waveguide is cooled by the attachment of water-cooled copper tubes. These are connected through a conductive graphite foil that is used to increase the heat transfer ability between the aluminum and copper. In the regions where the waveguide is joined to a miter bend or to another waveguide section via a coupling, the waveguide cannot be actively cooled due to coupling hardware. Waveguide sections near couplings and miter bends are modeled and subjected to heat loads based on ITER design specifications. The thermal analysis predicts the maximum waveguide temperature in these regions and the amount of axial thermal expansion of the waveguide.
In addition, testing is done to determine the thermal contact conductance (TCC) between copper and aluminum surfaces with and without several candidate thermal contact materials. These results are used in the finite element analysis to model the ability to transfer heat across interfaces. The TCC test results make it clear that there is significant heat transfer between separate components, as the TCC between components is greater than 5 kW/m2K without thermal contact material and greater than 30 kW/m2K when thin graphite foil is used to increase the heat transfer ability. Therefore miter bends and miter bend mirrors are included as necessary in the finite element model.