ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Westinghouse teams with Nordion and PSEG to produce Co-60 at Salem
Westinghouse Electric Company, Nordion, and PSEG Nuclear announced on Tuesday the signing of long-term agreements to establish the first commercial-scale production of cobalt-60 in a U.S. nuclear reactor. Under the agreements, the companies are to apply newly developed production technology for pressurized water reactors to produce Co-60 at PSEG’s Salem nuclear power plant in New Jersey.
Ethan Coffey, Greg Hanson, David Hill, Timothy Jones, Arnold Lumsdaine, Claire Luttrell, Chuck Schaich
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 505-509
Technical Note | doi.org/10.1080/15361055.2017.1333857
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system provides 20 MW of microwave power from 24 gyrotron sources. The power is transmitted through evacuated, corrugated waveguide transmission lines. The aluminum waveguide is cooled by the attachment of water-cooled copper tubes. These are connected through a conductive graphite foil that is used to increase the heat transfer ability between the aluminum and copper. In the regions where the waveguide is joined to a miter bend or to another waveguide section via a coupling, the waveguide cannot be actively cooled due to coupling hardware. Waveguide sections near couplings and miter bends are modeled and subjected to heat loads based on ITER design specifications. The thermal analysis predicts the maximum waveguide temperature in these regions and the amount of axial thermal expansion of the waveguide.
In addition, testing is done to determine the thermal contact conductance (TCC) between copper and aluminum surfaces with and without several candidate thermal contact materials. These results are used in the finite element analysis to model the ability to transfer heat across interfaces. The TCC test results make it clear that there is significant heat transfer between separate components, as the TCC between components is greater than 5 kW/m2K without thermal contact material and greater than 30 kW/m2K when thin graphite foil is used to increase the heat transfer ability. Therefore miter bends and miter bend mirrors are included as necessary in the finite element model.