ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Ethan Coffey, Greg Hanson, David Hill, Timothy Jones, Arnold Lumsdaine, Claire Luttrell, Chuck Schaich
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 505-509
Technical Note | doi.org/10.1080/15361055.2017.1333857
Articles are hosted by Taylor and Francis Online.
The ITER Electron Cyclotron Heating (ECH) system provides 20 MW of microwave power from 24 gyrotron sources. The power is transmitted through evacuated, corrugated waveguide transmission lines. The aluminum waveguide is cooled by the attachment of water-cooled copper tubes. These are connected through a conductive graphite foil that is used to increase the heat transfer ability between the aluminum and copper. In the regions where the waveguide is joined to a miter bend or to another waveguide section via a coupling, the waveguide cannot be actively cooled due to coupling hardware. Waveguide sections near couplings and miter bends are modeled and subjected to heat loads based on ITER design specifications. The thermal analysis predicts the maximum waveguide temperature in these regions and the amount of axial thermal expansion of the waveguide.
In addition, testing is done to determine the thermal contact conductance (TCC) between copper and aluminum surfaces with and without several candidate thermal contact materials. These results are used in the finite element analysis to model the ability to transfer heat across interfaces. The TCC test results make it clear that there is significant heat transfer between separate components, as the TCC between components is greater than 5 kW/m2K without thermal contact material and greater than 30 kW/m2K when thin graphite foil is used to increase the heat transfer ability. Therefore miter bends and miter bend mirrors are included as necessary in the finite element model.