ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Marco Riva, Christian Di Sanzo, Mohamed Abdou, Mahmoud Youssef
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 469-477
Technical Note | doi.org/10.1080/15361055.2017.1333853
Articles are hosted by Taylor and Francis Online.
Breeding blankets with integrated first wall are one of the most critical components of nuclear fusion reactors. Blankets breeding zones are characterized by steep nuclear heating gradients due to the exothermic nuclear reaction 6Li(n, )T and the high intensity neutron flux in the proximity of the first wall. Non-uniformity in nuclear heating can generate sharp temperature gradients that deeply affect material properties. This conceptual study explores an original way to flatten nuclear heating profiles by proposing a blanket characterized by layers of different 6Li enrichment in the breeder region while maximizing Tritium Breeding Ratio (TBR) and power generation. Two types of fusion blanket are studied: (1) Helium Cooled Ceramic Reflector (HCCR) and (2) Dual Coolant Lead Lithium (DCLL). For HCCR, it is found in the optimal design case, that the power peak-to-average can be reduced by 47.85%, 42.45% and 54.13% in the front, middle and back channel respectively when compared to the reference design. On the other side, we found that this method of profile flattening is not appealing for DCLL, under the geometrical configuration and material selection in this particular blanket design, since most of nuclear heating is caused by photon heat deposition.