ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
On North Carolina's ratification of Senate Bill 266
I have been a North Carolinian for 62 years and involved in the state’s nuclear energy industry from my high school days to today. I have seen firsthand how North Carolina has flourished. This growth has been due to the state’s enterprising people and strong leaders. Clean, competitive, and always-on nuclear power has also played an important role.
L. Savoldi, R. Bonifetto, A. Brighenti, V. Corato, L. Muzzi, S. Turtu’, R. Zanino, A. Zappatore
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 439-448
Technical Paper | doi.org/10.1080/15361055.2017.1333866
Articles are hosted by Taylor and Francis Online.
The design of a suitable quench protection system is fundamental for the safe operation of superconducting magnets and in turn requires the accurate simulation of the quench transient. The quench propagation in a toroidal field (TF) coil for the future European fusion reactor (EU DEMO) is analyzed here considering the latest, layer-wound winding pack (WP) design proposed by ENEA. The thermal-hydraulic model of a TF coil implemented in the 4C code is updated by including the external cryogenic circuits of the WP and of the casing cooling channels and proposing a preliminary layout of the quench lines. Three different locations are considered for the quench initiation: maximum temperature margin in the WP, and minimum and maximum temperature margin on the same turn of the innermost layer. The evolution of the main electrical and thermal-hydraulic parameters is simulated, such as voltage along each layer, quench front propagation both along and across the layers, hot spot temperature, pressurization of the coil and coolant mass flow rate at the coil boundaries, so that the 4C code provides a reliable (in view of its validation) and detailed virtual monitor of what happens inside the coil during the quench transient. In all cases considered, the ENEA design is predicted to satisfy the present (i.e., ITER) design criteria concerning the maximum allowed hot spot temperature.