ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
University of Florida–led consortium to research nuclear forensics
A 16-university team of 31 scientists and engineers, under the title Consortium for Nuclear Forensics and led by the University of Florida, has been selected by the Department of Energy’s National Nuclear Security Administration (NNSA) to develop the next generation of new technologies and insights in nuclear forensics.
Hiroki Shishido, Noritaka Yusa, Hidetoshi Hashizume, Yoshiki Ishii, Norikazu Ohtori
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 382-388
Technical Paper | doi.org/10.1080/15361055.2017.1330623
Articles are hosted by Taylor and Francis Online.
The present study evaluates the thermal design of a blanket system using Flinabe in order to facilitate further discussions on its applicability as a self-cooled liquid blanket system. Molecular dynamics simulations were performed to evaluate the Prandtl number of mixtures in five compositions (LiF–NaF–BeF2 = 31–31–38, 36–27–37, 42–22–36, 49–16–35, and 67–0–33). Thermofluid analysis was carried out to estimate the temperature margin and pressure drop per unit length in a simple geometry model of the blanket system. The Prandtl number of Flinabe is above 100 at 400°C. The present study reveals that Flinabe remarkably relaxes the design conditions compared to Flibe as a coolant owing to its low melting point. In contrast, the pressure drop per unit length of Flinabe is higher than that of Flibe because the viscosity exponentially increases at low temperature. The temperature margin is quite dependent on the heat load on the first wall. If the pressure drop per unit length is around 1.0 MPa/m, the heat load value must be approximately below 0.7 MW/m2.