ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
July 2022
Fusion Science and Technology
Latest News
Finding fusion’s place
Fusion energy is attracting significant interest from governments and private capital markets. The deployment of fusion energy on a timeline that will affect climate change and offer another tool for energy security will require support from stakeholders, regulators, and policymakers around the world. Without broad support, fusion may fail to reach its potential as a “game-changing” technology to make a meaningful difference in addressing the twin challenges of climate change and geopolitical energy security.
The process of developing the necessary policy and regulatory support is already underway around the world. Leaders in the United States, the United Kingdom, the European Union, China, and elsewhere are engaging with the key issues and will lead the way in setting the foundation for a global fusion industry.
L. El-Guebaly, M. Harb, A. Davis, J. Menard, T. Brown
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 354-361
Technical Paper | dx.doi.org/10.1080/15361055.2017.1333864
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the US developmental roadmap to fusion energy. The spherical tokamak-based FNSF has been designed through a national collaborative effort led by the Princeton Plasma Physics laboratory. High-temperature superconducting (HTS) magnets are potentially attractive for such applications. Among other aspects, the magnet shielding and tritium breeding assessments represent key elements for achieving the design engineering objectives. Numerous inboard shielding and cooling materials have been examined to select an optimal shield that protects the inboard HTS magnet and in the meanwhile enhances the outboard breeding. The breeding blanket of choice is the dual-cooled lead lithium (DCLL) blanket. Our 3-D neutronics model included all blanket internals in great details along with nine specialized ports for blanket testing, materials testing, plasma heating, and current drive. The inclusion of a thin DCLL blanket on the inboard side was deemed necessary to achieve an overall tritium breeding ratio in excess of unity.