ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
L. El-Guebaly, M. Harb, A. Davis, J. Menard, T. Brown
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 354-361
Technical Paper | doi.org/10.1080/15361055.2017.1333864
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is viewed as an essential element of the US developmental roadmap to fusion energy. The spherical tokamak-based FNSF has been designed through a national collaborative effort led by the Princeton Plasma Physics laboratory. High-temperature superconducting (HTS) magnets are potentially attractive for such applications. Among other aspects, the magnet shielding and tritium breeding assessments represent key elements for achieving the design engineering objectives. Numerous inboard shielding and cooling materials have been examined to select an optimal shield that protects the inboard HTS magnet and in the meanwhile enhances the outboard breeding. The breeding blanket of choice is the dual-cooled lead lithium (DCLL) blanket. Our 3-D neutronics model included all blanket internals in great details along with nine specialized ports for blanket testing, materials testing, plasma heating, and current drive. The inclusion of a thin DCLL blanket on the inboard side was deemed necessary to achieve an overall tritium breeding ratio in excess of unity.