ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
L. El-Guebaly, M. Elias, B. Madani, C. Martin, E. Marriott, FESS-FNSF Team
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 347-353
Technical Paper | doi.org/10.1080/15361055.2017.1333865
Articles are hosted by Taylor and Francis Online.
The Fusion Nuclear Science Facility (FNSF) is an essential element of the U.S. developmental roadmap to fusion energy. The facility displays the complex integration of tokamak components and subsystems in fusion environment while testing and developing fusion technologies for the U.S. demonstration (DEMO) plant. The integration of the neutronics, shielding, and activation assessments is a key element to the success of FNSF operation. This paper overviews the engineering aspects of the tokamak-based FNSF study and presents an integral scheme that considered the overall configuration, radiation limits, top-level design requirements (including maximizing the tritium breeding ratio), smart selection of low-activation materials for each component, radial build optimization and definition, environmental and safety constraints, and upper temperatures for the reuse of reduced activation ferritic martensitic and bainitic structures after severe loss of coolant accidents.