ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
A. Ouroua, J. H. Beno, A. Bryant, D. Weeks, P. Phillips, W. L. Rowan
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 331-336
Technical Paper | doi.org/10.1080/15361055.2017.1330640
Articles are hosted by Taylor and Francis Online.
This paper describes the development of a prototype hot calibration source for the ITER-ECE diagnostic system. A resistive heating element encapsulated in an Inconel heating block was initially selected to heat a silicon carbide emitter to the required 700°C temperature. Radiative and direct contact heat transfer methods were considered and tested in a test prototype. The radiative heat transfer approach was selected and methods to improve the heater emissivity were investigated. Extended tests were conducted to verify long term heating performance, materials stability, and ITER vacuum compatibility. Design iterations guided by initial test results followed and alternative heater materials, heating elements, and heater design features were considered. Initial design, analysis, and test results are presented. Subsequent efforts to meet the full requirements of the hot calibration source are also presented.