ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
S. Meitner, L. R. Baylor, N. Commaux, D. Shiraki, S. Combs, T. Bjorholm, T. Ha, W. McGinnis
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 318-323
Technical Papers | doi.org/10.1080/15361055.2017.1333854
Articles are hosted by Taylor and Francis Online.
Disruptions are sudden unplanned terminations of tokamak plasmas that can lead to high thermal loads and runaway electrons (REs). Unmitigated disruptions in ITER are predicted to dissipate up to 350 MJ of thermal energy and generate several MA of multi-MeV runaway electrons. This intense heat and energetic particle beams can cause localized melting of the plasma facing components. Reliable and fast acting disruption mitigation (DM) techniques are therefore a critical requirement for ITER to safeguard the machine from damage.
The proven method for DM centers on injecting a large quantity of impurity particles into the plasma to quickly increase density and radiate the thermal energy to mitigate thermal effects. Additionally, if the particle injection can achieve sufficient density, it can create collisional drag which suppresses the formation of REs. Shattered pellet injection (SPI) has proven to be the most effective method of particle injection thus far attempted and is planned for the DM system on ITER. Recently, a new three-barrel second SPI (SPI-II) system has been developed for use on DIII-D to study injection effects from multiple toroidal locations and pellet timing. The three pellets can be formed and fired individually or simultaneously. The SPI-II has provisions for making and firing pure species pellets with deuterium, neon, or argon and also deuterium layered pellets with a core of neon and mixtures of neon and deuterium.