ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
S. Meitner, L. R. Baylor, N. Commaux, D. Shiraki, S. Combs, T. Bjorholm, T. Ha, W. McGinnis
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 318-323
Technical Papers | doi.org/10.1080/15361055.2017.1333854
Articles are hosted by Taylor and Francis Online.
Disruptions are sudden unplanned terminations of tokamak plasmas that can lead to high thermal loads and runaway electrons (REs). Unmitigated disruptions in ITER are predicted to dissipate up to 350 MJ of thermal energy and generate several MA of multi-MeV runaway electrons. This intense heat and energetic particle beams can cause localized melting of the plasma facing components. Reliable and fast acting disruption mitigation (DM) techniques are therefore a critical requirement for ITER to safeguard the machine from damage.
The proven method for DM centers on injecting a large quantity of impurity particles into the plasma to quickly increase density and radiate the thermal energy to mitigate thermal effects. Additionally, if the particle injection can achieve sufficient density, it can create collisional drag which suppresses the formation of REs. Shattered pellet injection (SPI) has proven to be the most effective method of particle injection thus far attempted and is planned for the DM system on ITER. Recently, a new three-barrel second SPI (SPI-II) system has been developed for use on DIII-D to study injection effects from multiple toroidal locations and pellet timing. The three pellets can be formed and fired individually or simultaneously. The SPI-II has provisions for making and firing pure species pellets with deuterium, neon, or argon and also deuterium layered pellets with a core of neon and mixtures of neon and deuterium.