ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
S. Meitner, L. R. Baylor, N. Commaux, D. Shiraki, S. Combs, T. Bjorholm, T. Ha, W. McGinnis
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 318-323
Technical Papers | doi.org/10.1080/15361055.2017.1333854
Articles are hosted by Taylor and Francis Online.
Disruptions are sudden unplanned terminations of tokamak plasmas that can lead to high thermal loads and runaway electrons (REs). Unmitigated disruptions in ITER are predicted to dissipate up to 350 MJ of thermal energy and generate several MA of multi-MeV runaway electrons. This intense heat and energetic particle beams can cause localized melting of the plasma facing components. Reliable and fast acting disruption mitigation (DM) techniques are therefore a critical requirement for ITER to safeguard the machine from damage.
The proven method for DM centers on injecting a large quantity of impurity particles into the plasma to quickly increase density and radiate the thermal energy to mitigate thermal effects. Additionally, if the particle injection can achieve sufficient density, it can create collisional drag which suppresses the formation of REs. Shattered pellet injection (SPI) has proven to be the most effective method of particle injection thus far attempted and is planned for the DM system on ITER. Recently, a new three-barrel second SPI (SPI-II) system has been developed for use on DIII-D to study injection effects from multiple toroidal locations and pellet timing. The three pellets can be formed and fired individually or simultaneously. The SPI-II has provisions for making and firing pure species pellets with deuterium, neon, or argon and also deuterium layered pellets with a core of neon and mixtures of neon and deuterium.