ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
S. A. Musa, B. Zhao, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 306-311
Technical Paper | doi.org/10.1080/15361055.2017.1333829
Articles are hosted by Taylor and Francis Online.
Experimental evaluation of the thermal-hydraulic characteristics of helium-cooled divertor concepts is important in developing commercial magnetic fusion energy (MFE). Although experimental studies of a variety of concepts have been performed at the Georgia Institute of Technology (GT) over the last decade, achieving prototypical steady-state incident heat fluxes of 10 MW/m2 remains a major challenge. As an alternative to heating the test section, this work presents an initial assessment of a “reversed heat flux approach” that cools the test modules (instead of heating them) with water to determine the heat transfer coefficients (HTC). This approach was pioneered by the Karlsruhe Institute of Technology (KIT) in their initial studies of the helium-cooled modular divertor with multiple jets (HEMJ).
The objectives of this design study are to: 1) determine whether such a reversed heat flux approach can be used to experimentally study the thermal-hydraulic performance of helium-cooled divertor concepts, while minimizing safety and operational issues associated with the extremely high temperatures (>1200°C) reached when testing at prototypical conditions (inlet conditions of 700°C and 10 MPa with an incident heat flux of 10 MW/m2), and 2) determine the design and operational parameters for a small-scale submerged water jet impingement cooling facility suitable for validating these numerical predictions. Numerical simulations were performed to determine the impinging-jet (water) mass flow rates required to remove heat fluxes up to 10 MW/m2 from a single HEMJ module at prototypical conditions (i.e., 700°C and 10 MPa). Initial axisymmetric simulations at water pressures up to 3 MPa suggest that a submerged single-phase impinging water jet at (300 K, 1 MPa) and = 3.5 kg/s can remove heat fluxes as great as 7.5 MW/m2 over a 2 cm diameter area.