ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
A review of workforce trends in the nuclear community
The nuclear community is undergoing a moment of unprecedented interest and growth not seen in decades. The passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act are providing a multitude of new funding opportunities for the nuclear community, and not just the current fleet. A mix of technologies and reactor types are being evaluated and deployed, with Vogtle Units 3 and 4 coming on line later this year, the Advanced Reactor Demonstration Projects of X-energy and TerraPower, and NuScale’s work with Utah Associated Municipal Power Systems to build a first-of-a-kind small modular reactor, making this is an exciting time to join the nuclear workforce.
B. Zhao, S. A. Musa, S. I. Abdel-Khalik, M. Yoda
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 300-305
Technical Paper | doi.org/10.1080/15361055.2017.1333828
Articles are hosted by Taylor and Francis Online.
The leading candidate for the DEMO divertor is the helium-cooled modular divertor with multiple jets (HEMJ) design, which is to date the only design that has been experimentally shown to accommodate incident steady-state heat fluxes greater than 10 MW/m2. In the HEMJ, the divertor target plates are cooled by 25 jets of different diameters that impinge upon a curved tungsten (W)-alloy surface brazed to a hexagonal W tile. Given the difficulties in manufacturing such a complicated geometry in W and W-alloys, numerical simulations were performed to determine if simplified versions of the HEMJ design could provide similar thermal-hydraulic performance. Parametric studies were performed at fully prototypical conditions using one-way coupled thermo-mechanical and fluid dynamics simulations in ANSYS® Workbench® to determine the effect of varying the jet-to-cooled surface distance, the number, diameter, and spacing of the jet holes (the jets were all assumed to have the same diameter), and the curvature of the cooled surface on the thermal-hydraulic performance. The results for the evaluated 75 different jet array configurations suggest that similar and even superior thermal-hydraulic performance can be provided by several designs. These HEMJ variants with fewer jets and larger holes may reduce fabrication costs and improve reliability. For example, the simulations suggest that a configuration involving flat surfaces with six holes surrounding one central hole, all with a diameter of 1.18 mm at a jet-to-cooled surface distance of 1.25 mm provides a 6.6% higher average heat transfer coefficient (HTC) at a 4.8% lower pressure drop when compared with the HEMJ. The maximum temperature of the outer shell and cooled surface stress are also lower for this design. In all cases, the simulations also suggest that the jet-to-cooled surface distance decreases by approximately 0.2 mm when the temperature increases from ambient to prototypical conditions due to differential thermal expansion of the jets cartridge and the W-alloy pressure boundary.