ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
A review of workforce trends in the nuclear community
The nuclear community is undergoing a moment of unprecedented interest and growth not seen in decades. The passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act are providing a multitude of new funding opportunities for the nuclear community, and not just the current fleet. A mix of technologies and reactor types are being evaluated and deployed, with Vogtle Units 3 and 4 coming on line later this year, the Advanced Reactor Demonstration Projects of X-energy and TerraPower, and NuScale’s work with Utah Associated Municipal Power Systems to build a first-of-a-kind small modular reactor, making this is an exciting time to join the nuclear workforce.
M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 285-293
Technical Paper | doi.org/10.1080/15361055.2017.1333825
Articles are hosted by Taylor and Francis Online.
Developing ways to effectively remove the extremely high heat fluxes incident on the plasma-facing components is an important challenge for magnetic fusion energy (MFE). In most cases, the target plates of the divertor, which removes helium ash and other impurities from the core plasma, are subject to the most extreme conditions, with steady-state incident heat fluxes of at least 10 MW/m2. Starting from the early 1990s, a variety of divertor designs with target plates of tungsten (W), cooled for the most part by impinging jets of helium (He), have been investigated.
This paper reviews and discusses a number of these impinging-jet concepts, including the modular He-cooled finger-type configurations developed by the Karlsruhe Institute of Technology (KIT), as well as the T-tube divertor, the helium-cooled flat-plate (HCFP) divertor, and the combined plate/finger divertor, all evaluated as part of the ARIES studies. Over the last 15 years, a number of studies have shown that the steady-state thermal and structural performance of single units of a number of these divertor designs can be evaluated with reasonable accuracy under prototypical conditions using a combination of numerical simulations and experimental studies. The helium-cooled modular jet (HEMJ) design has been successfully tested at incident heat fluxes as great as 13 MW/m2 at prototypical conditions. Although it remains unclear how much neutron irradiation damage will affect W, or other armor materials, He jet-impingement cooling is a leading candidate for resolving power exhaust heat removal issues in plasma-material interactions.