ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
BWRX-300 SMR passes U.K. regulatory milestone
GE Vernova Hitachi Nuclear Energy’s BWRX-300 small modular reactor has completed the second step of the generic design assessment (GDA) process in the United Kingdom. In this step, the U.K. Office for Nuclear Regulation, the Environment Agency, and Natural Resources Wales did not identify “any fundamental safety, security safeguard or environmental protection shortfalls with the design of the BWRX-300.” Step 1 was completed in December 2024.
M. Yoda, S. I. Abdel-Khalik
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 285-293
Technical Paper | doi.org/10.1080/15361055.2017.1333825
Articles are hosted by Taylor and Francis Online.
Developing ways to effectively remove the extremely high heat fluxes incident on the plasma-facing components is an important challenge for magnetic fusion energy (MFE). In most cases, the target plates of the divertor, which removes helium ash and other impurities from the core plasma, are subject to the most extreme conditions, with steady-state incident heat fluxes of at least 10 MW/m2. Starting from the early 1990s, a variety of divertor designs with target plates of tungsten (W), cooled for the most part by impinging jets of helium (He), have been investigated.
This paper reviews and discusses a number of these impinging-jet concepts, including the modular He-cooled finger-type configurations developed by the Karlsruhe Institute of Technology (KIT), as well as the T-tube divertor, the helium-cooled flat-plate (HCFP) divertor, and the combined plate/finger divertor, all evaluated as part of the ARIES studies. Over the last 15 years, a number of studies have shown that the steady-state thermal and structural performance of single units of a number of these divertor designs can be evaluated with reasonable accuracy under prototypical conditions using a combination of numerical simulations and experimental studies. The helium-cooled modular jet (HEMJ) design has been successfully tested at incident heat fluxes as great as 13 MW/m2 at prototypical conditions. Although it remains unclear how much neutron irradiation damage will affect W, or other armor materials, He jet-impingement cooling is a leading candidate for resolving power exhaust heat removal issues in plasma-material interactions.