ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Mahmoud Lotfy, Alice Ying, Mohamed Abdou, Yi-Hyun Park, Seungyon Cho
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 255-262
Technical Paper | doi.org/10.1080/15361055.2017.1330637
Articles are hosted by Taylor and Francis Online.
Ceramic breeder pebble beds undergo complex thermally-induced stress build-up and relaxation processes during reactor operations due to the pebble bed thermal expansion and creep deformation. Understanding such processes can facilitate the evaluation of a solid breeder performance, including bed stress/strain equilibrium status, which will guide the design of stable blanket operation and assessment of lifetime. The efforts of this study cover both experimental testing and numerical modeling for this purpose. Measured stresses in pebble beds show a decreasing trend with thermal cycles, until ultimately reaching a saturated state. This stress relaxation is mainly caused by the combined effect of bed plastic rearrangement and accumulation of creep deformation under compressive stresses and high temperatures. As bed stress is reduced, the creep deformation becomes less significant and further cyclic operation would not alter the pebble bed mechanical state. To validate the thermally-induced stress and its variation with cycles, experiments of thermal stress measurement have been designed and conducted for pebble beds heated by both continuous and pulsed power sources. Moreover, the effects of mechanical pre-compaction were investigated with emphasis on understanding the relationship between the bed stress-state evolution and maintaining adequate levels of thermal contact between the pebbles and the coolant structure. The results of this study presents valuable data to serve as a basis for validation of the most recent pebble bed numerical models.