ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
Mahmoud Lotfy, Alice Ying, Mohamed Abdou, Yi-Hyun Park, Seungyon Cho
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 255-262
Technical Paper | doi.org/10.1080/15361055.2017.1330637
Articles are hosted by Taylor and Francis Online.
Ceramic breeder pebble beds undergo complex thermally-induced stress build-up and relaxation processes during reactor operations due to the pebble bed thermal expansion and creep deformation. Understanding such processes can facilitate the evaluation of a solid breeder performance, including bed stress/strain equilibrium status, which will guide the design of stable blanket operation and assessment of lifetime. The efforts of this study cover both experimental testing and numerical modeling for this purpose. Measured stresses in pebble beds show a decreasing trend with thermal cycles, until ultimately reaching a saturated state. This stress relaxation is mainly caused by the combined effect of bed plastic rearrangement and accumulation of creep deformation under compressive stresses and high temperatures. As bed stress is reduced, the creep deformation becomes less significant and further cyclic operation would not alter the pebble bed mechanical state. To validate the thermally-induced stress and its variation with cycles, experiments of thermal stress measurement have been designed and conducted for pebble beds heated by both continuous and pulsed power sources. Moreover, the effects of mechanical pre-compaction were investigated with emphasis on understanding the relationship between the bed stress-state evolution and maintaining adequate levels of thermal contact between the pebbles and the coolant structure. The results of this study presents valuable data to serve as a basis for validation of the most recent pebble bed numerical models.