ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
G. L. Kulcinski, Ross F. Radel, Andrew Davis
Fusion Science and Technology | Volume 72 | Number 3 | October 2017 | Pages 248-254
Technical Paper | doi.org/10.1080/15361055.2017.1333861
Articles are hosted by Taylor and Francis Online.
A near term, low cost 14 MeV neutron materials test facility has been designed that allows significant radiation damage (dpa, appm He, etc.) levels to be achieved typical of those that will be experienced in DT Demonstration or commercial DT power plants. The design described in this paper produces peak damage levels of ≈4–6 dpa/fpy in 15 cm3 and has ≈600 cm3 test volume covering the damage range from 1 to 6 dpa/fpy. The total active tritium inventory in the test facility is less than 1 g and the overall construction costs are also roughly unchanged from an earlier (2015) design. The time to initial operation remains at ≈4 years from the start of construction because it builds on an on-going project for radioisotope production already under construction. This latest facility design has the possibility to provide a 2 MW-y/m2, 14 MeV neutron exposure to first wall materials in less than 4 fpy’s of operation.