ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Tadas Kaliatka, Eugenijus Uspuras, Algirdas Kaliatka
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 176-187
Technical Note | doi.org/10.1080/15361055.2017.1320496
Articles are hosted by Taylor and Francis Online.
An event of water coolant ingress into the vacuum vessel (VV) is one of the most important events leading to severe consequences in nuclear fusion reactors. The ingress of coolant to the VV could appear due to coolant pipe rupture of in-vessel components. Any damage of in-vessel components could lead to water ingress and may lead to pressure increase and possible damage of the VV. Therefore, it is important to understand thermohydraulic processes in the VV during the ingress of coolant event (ICE) to prevent overpressurization of the VV. This technical note updates the developed Wendelstein 7-X (W7-X) model in accordance with the experience gained from the modeling of ICE experiments. Calculation results using the updated model are compared with the results obtained using an older model and the results of other researchers. The calculation results of the updated W7-X model show a much smaller pressure increase rate in the VV compared to the old model. In order to find the maximal area of partial break, which increases pressure in the VV but does not reach burst disk activation pressure (no steam release from the VV to the environment), the best-estimate approach is provided. The results of the analysis reveal that partial break using the updated W7-X model could be much bigger than what was considered before.