ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2023)
February 6–9, 2023
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2023
Jul 2022
Latest Journal Issues
Nuclear Science and Engineering
February 2023
Nuclear Technology
Fusion Science and Technology
Latest News
A review of workforce trends in the nuclear community
The nuclear community is undergoing a moment of unprecedented interest and growth not seen in decades. The passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act are providing a multitude of new funding opportunities for the nuclear community, and not just the current fleet. A mix of technologies and reactor types are being evaluated and deployed, with Vogtle Units 3 and 4 coming on line later this year, the Advanced Reactor Demonstration Projects of X-energy and TerraPower, and NuScale’s work with Utah Associated Municipal Power Systems to build a first-of-a-kind small modular reactor, making this is an exciting time to join the nuclear workforce.
Maxwell D. Hill, Weston M. Stacey
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 162-175
Technical Note | doi.org/10.1080/15361055.2017.1320494
Articles are hosted by Taylor and Francis Online.
Investigations of tokamak dynamics, especially as they relate to the challenge of burn control, require an accurate representation of energy and particle confinement times. While the ITER-98 scaling law represents a correlation of data from a wide range of tokamaks, confinement scaling laws will need to be fine-tuned to specific operational features of specific tokamaks in the future. A methodology for developing, by regression analysis, tokamak- and configuration-specific confinement tuning models is presented and applied to DIII-D as an illustration. It is shown that inclusion of tuning parameters in the confinement models can significantly enhance the agreement between simulated and experimental temperatures relative to simulations in which only the ITER-98 scaling law is used. These confinement tuning parameters can also be used to represent the effects of various heating sources and other plasma operating parameters on overall plasma performance and may be used in future studies to inform the selection of plasma configurations that are more robust against power excursions.