ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Doo-Hee Chang, Tae-Seong Kim, Min Park, Bong-Ki Jung, Seung Ho Jeong, Kwang Won Lee, Sang Ryul In, Atsushi Kojima, Mieko Kashiwagi, Masaya Hanada, Young-Soon Bae, Jong-Gu Kwak
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 157-161
Technical Note | doi.org/10.1080/15361055.2017.1319719
Articles are hosted by Taylor and Francis Online.
Long-pulse operation has been initially and successfully demonstrated during a 100-s stable beam extraction in the neutral beam test stand (NBTS) system of the Korea Atomic Energy Research Institute (KAERI) for the positive ion source (IS) of the JT-60SA neutral beam injector. The NBTS system was constructed at KAERI to develop 300-s deuterium beam extractions of 100 kV/50 A as an auxiliary heating system of the Korea Superconducting Tokamak Advanced Research (KSTAR). The IS of the JT-60SA neutral beam injector is composed of a plasma generator and a set of tetrode accelerators. The beamline components include an optical multichannel analyzer duct, a neutralizer, a bending magnet (BM), a calorimeter, and a vacuum pump system. The beam power deposition of the IS and the beamline components along the NBTS have been measured by water flow calorimetry (WFC), and a total of 99.7% of the extracted beam power (Vacc∙Iacc) was counted for a hydrogen beam of 82 kV/25 A (2.05 MW) during 100-s beam extraction. To reduce the localized heat load on the calorimeter plate, a method of small-angle deflection for the ion beam particles was applied using a small alternate current of 8 A, 0.5 Hz for the BM coil.