ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
Yuming Gu, Jun Li, Jianglong Wei, Yahong Xie, Lizhen Liang, Chundong Hu
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 148-156
Technical Note | doi.org/10.1080/15361055.2017.1319718
Articles are hosted by Taylor and Francis Online.
A prototype negative ion source is in development toward the giant negative ion source for the China Fusion Engineering Test Reactor neutral beam injection system at the Institute of Plasma Physics, Chinese Academy of Sciences. The multiaperture and multichannel grids are the most challengeable during the construction of the prototype negative ion source. The research and development activities for the grid manufacturing method were carried out and divided into detailed design, implementation, and testing phases. Based on a special manufacturing process involving the vacuum brazing technique, some prototype grids were produced. Two prototypes have similar structures to the extraction grid of the prototype negative ion source except for the reduced number of cooling channels. A testing campaign (including dimension inspection, leak tests, thermal imaging tests, and magnetic tests) was carried out. The results demonstrate that the manufacturing process and construction technology can meet the requirements of the extraction grid and can promote the construction of other grids or components having a similar structure.