ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
C. B. Yeamans, D. L. Bleuel
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 120-128
Technical Paper | doi.org/10.1080/15361055.2017.1320499
Articles are hosted by Taylor and Francis Online.
In need of a spatially resolved neutronic measurement to better understand the implosion physics of inertial-confined fusion, the National Ignition Facility (NIF) developed a distributed Flange-mounted Neutron Activation Diagnostic system (FNAD). FNAD measures primary deuterium-tritium (D-T) fusion neutron fluence at 20 points surrounding the target chamber using the 90Zr(n,2n)89Zr reaction, utilizing the 12.1-MeV reaction threshold to minimize signal from spurious neutron sources. Through careful design of the measurement systematics, the relative ratios of fluence at those 20 points are measured to within 2%. This precision is sufficient to allow interpretation of the resulting neutron sky as a map of scattering mass areal density (ρR) of the cold compressed D-T fuel surrounding the nuclear burn. Controlling the shape of this fuel during assembly is essential to achieving optimal implosion performance. This paper details the system design and locational deployment, measurement techniques, and calibration procedure. It also outlines data analysis and reduction, and data presentation methods used during the National Ignition Campaign and High-Foot Campaign.