ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
DOE awards $134M for fusion research and development
The Department of Energy announced on Wednesday that it has awarded $134 million in funding for two programs designed to secure U.S. leadership in emerging fusion technologies and innovation. The funding was awarded through the DOE’s Fusion Energy Sciences (FES) program in the Office of Science and will support the next round of Fusion Innovation Research Engine (FIRE) collaboratives and the Innovation Network for Fusion Energy (INFUSE) awards.
J. Guasp, F. Castejón, I. Pastor, R. F. Álvarez-Estrada
Fusion Science and Technology | Volume 72 | Number 2 | August 2017 | Pages 99-119
Technical Paper | doi.org/10.1080/15361055.2017.1320497
Articles are hosted by Taylor and Francis Online.
The inverse problem for Thomson scattering (TS), that is, finding the electron distribution function (EDF), not restricted to be Maxwellian or isotropic, from the observation of the scattered spectrum, is addressed. Based on previous results by the authors, a new parallel FORTRAN code, INVERT, has been developed that allows to estimate the free parameters of a wide class of distribution functions by fitting experimental or numerical (synthetic) spectra using a variant of the simplex method. The application of these techniques to the extraction of non-Maxwellian or anisotropic features in the electron distribution function is analyzed in detail. The performance of the new code on noisy synthetic spectra and its capabilities to quantitatively discriminate among several competing EDFs modeling data are discussed. The issues of uniqueness (or nonuniqueness) of the inverse problem in case of multiparameter distribution functions are discussed. In such cases, the prospects of multiple diagnostics synthesis, or having several simultaneous scattering chords to remove the ambiguity in the reconstruction of the EDF, are also discussed. Some comments on the requirements of a TS system able to detect nonthermal or anisotropic effects are also included.