ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Moving past Sayre’s Law on low-dose radiation
Craig Piercycpiercy@ans.org
So, President Trump has just kicked the low-dose radiation hornets’ nest.
Specifically, his recently signed executive order “Ordering the Reform of the Nuclear Regulatory Commission” calls for the NRC to “reconsider reliance” on the linear no-threshold (LNT) theory and the ALARA (as low as reasonably achievable) standard for radiation protection.
This directive will certainly reignite a vociferous debate within the radiation research community over the continued efficacy of using LNT as the basis for protecting the public and the environment, a community that has been wracked with controversy on this matter for the last few years.
I must admit that whenever the low-dose issue comes up, my first thoughts always go to Sayre’s Law.
Bin Zhang, Shi Li, Sheng Zhang, Yebin Chen, Liqun Hu
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 91-98
Technical Note | doi.org/10.1080/15361055.2017.1319717
Articles are hosted by Taylor and Francis Online.
The Radial X-ray camera (RXC) is a diagnostic for the ITER tokamak. During baking and operation of ITER, the detector environment temperature will be up to 240°C, whereas the detectors must be kept below 70°C. Therefore, cooling of the detectors mounted in the camera is critical and necessary. In order to verify the effect of gas cooling for RXC detectors, a relevant test has been designed. Since the outcome of this test will be the supply of the RXC cooling system, the ITER Instrument and Control strategy was selected. Therefore, a Data Acquisition (DAQ) system was developed based on the Experimental Physics and Industrial Control System (EPICS) framework, which implements functions for real-time data acquisition, temperature control, supervision, and archiving. Moreover, it is easy to configure control information according to user requirements. Also, some linear devices were used in the reconfiguration of EPICS. This technical note presents the entire architecture of the DAQ system and the details on the design of EPICS. The system has been implemented, and has provided reliable data for the experiment.