ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
J. W. Yang, T. S. Li, T. Yi, C. K. Wang, M. Yang, W. M. Yang, S. Y. Liu, S. E. Jiang, Y. K. Ding
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 41-48
Technical Paper | doi.org/10.1080/15361055.2016.1273690
Articles are hosted by Taylor and Francis Online.
Electromagnetic pulses (EMPs) generated from lasers interacting with solid targets at the ShenGuang II laser facility were measured and analyzed in this work. The EMP radiations were related to the target geometries, where the strongest EMP signal with a magnitude of 103 V and duration of several dozens of nanoseconds resulted from the monopole flat coil and Au foil targets. The EMPs detected inside the laser facility were seriously affected by the chamber wall, which could reflect EMPs and prolong the signals with several typical pulsed peaks. This study was expected not only to provide basic information to interpret physical processes caused by laser irradiating targets but also to offer a path for electromagnetic interference shielding designs and protect the diagnostics from damage in inertial confinement fusion.