ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Deep Isolation validates its disposal canister for TRISO spent fuel
Nuclear waste disposal technology company Deep Isolation announced it has successfully completed Project PUCK, a government-funded initiative to demonstrate the feasibility and potential commercial readiness of its Universal Canister System (UCS) to manage TRISO spent nuclear fuel.
L. El-Guebaly, L. Mynsberge, A. Davis, C. D’Angelo, A. Rowcliffe, B. Pint, ARIES-ACT Team
Fusion Science and Technology | Volume 72 | Number 1 | July 2017 | Pages 17-40
Technical Paper | doi.org/10.1080/15361055.2016.1273669
Articles are hosted by Taylor and Francis Online.
The ARIES team has examined a multitude of fusion concepts over a period of 25 years. In recent years, the team wrapped up the Advanced Research, Innovation, and Evaluation Study (ARIES) series by completing the detailed design of the ARIES–Advanced and Conservative Tokamak (ARIES-ACT2) power plant—a plant with conservative physics and technology, representing a tokamak with reduced-activation ferritic/martensitic (RAFM) structure and dual-coolant lead-lithium blanket. The integration of nuclear assessments (neutronics, shielding, and activation) is an essential element to ARIES-ACT2 success. This paper highlights the design philosophy of in-vessel components and characterizes several nuclear-related issues that have been addressed during the course of the study to improve the ARIES-ACT2 design: sufficient breeding of tritium to fuel the plasma, well-optimized in-vessel components that satisfy all design requirements and guarantee the shielding functionality of its radial/vertical builds, survivability of low-activation/radiation-resistant structural materials in 14-MeV neutron environment, activation concerns for RAFM and corrosion-resistant oxide-dispersion-strengthened alloys, and an integral approach to handle the mildly radioactive materials during operation and after decommissioning.