ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
M. Cengher, J. Lohr, I. A. Gorelov, W. H. Grosnickle, D. Ponce, P. Johnson
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 213-218
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4073
Articles are hosted by Taylor and Francis Online.
The measurement of the power injected by the electron cyclotron heating (ECH) system in the DIII-D tokamak is a critical requirement for analysis of experiments, for tuning the gyrotrons for maximum power and efficiency, for tracking long-term operational trends, and for providing a warning of problems with the system. The ECH system at General Atomics consists of six 110-GHz, 1-MW-class gyrotrons. The radio-frequency (rf) power generated by each gyrotron is determined from calorimetry, using the relevant temperature and flow measurements from the cooling circuits of the cavity, matching optics unit, and dummy loads (DLs). The rf pulse length and time dependence are measured using an rf monitor at the first miter bend in the transmission line. The cavity power loading measured directly gives the generated rf power using a previously determined relationship between cavity loading and rf production. The direct measurement of the efficiencies of four of the transmission lines was performed using a high-power DL placed alternately in two positions of each DIII-D waveguide line, at accessible points close to the beginning and the end of each line. Total losses in the transmission lines range from 21.2 to 30.7%. Experimental results are compared to theoretical predictions of the performance of the components and waveguide lines.