ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
J.-P. Hogge, T. P. Goodman, S. Alberti, F. Albajar, K. A. Avramides, P. Benin, S. Bethuys, W. Bin, T. Bonicelli, A. Bruschi, S. Cirant, E. Droz, O. Dumbrajs, D. Fasel, F. Gandini, G. Gantenbein, S. Illy, S. Jawla, J. Jin, S. Kern, P. Lavanchy, C. Liévin, B. Marlétaz, P. Marmillod, A. Perez, B. Piosczyk, I. Pagonakis, L. Porte, T. Rzesnickl, U. Siravo, M. Thumm, M. Q. Tran
Fusion Science and Technology | Volume 55 | Number 2 | February 2009 | Pages 204-212
Technical Paper | Electron Cyclotron Emission and Electron Cyclotron Resonance Heating | doi.org/10.13182/FST09-A4072
Articles are hosted by Taylor and Francis Online.
The European Union is working toward providing 2-MW, coaxial-cavity, continuous-wave (cw) 170-GHz gyrotrons for ITER. Their design is based on results from an experimental preprototype tube having a pulse length of several milliseconds, in operation at Forschungszentrum Karlsruhe (FZK) for several years now. The first industrial prototype tube was designed for cw operation but, in a first phase, aimed at a pulse length of 1 s at the European Gyrotron Test Facility in Lausanne, Switzerland, as part of a phased testing/development program (1 s, 60 s, cw). The first experimental results of the operation of this prototype gyrotron are reported here. The microwave generation was characterized at very short pulse length (<0.01 s) using a load on loan from FZK, and the highest measured output power was 1.4 MW, at a beam energy significantly lower than the design value (83 kV instead of 90 kV), limited by arcing in the tube. The radio-frequency (rf) beam profile was measured to allow reconstruction of the phase and amplitude profile at the window and to provide the necessary information permitting proper alignment of the compact rf loads prior to pulse extension. Arcs in the tube limited the pulse length extension to a few tens of milliseconds. According to present planning, the tube is going to be opened, inspected, and refurbished, depending on the results of the inspection, to allow testing of an improved version of the mode launcher and replacement of some subassemblies.