ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Playing the “bad guy” to enhance next-generation safety
Sometimes, cops and robbers is more than just a kid’s game. At the Department of Energy’s national laboratories, researchers are channeling their inner saboteurs to discover vulnerabilities in next-generation nuclear reactors, making sure that they’re as safe as possible before they’re even constructed.
Sibylle Günter, Hartmut Zohm
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 682-691
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A407
Articles are hosted by Taylor and Francis Online.
Performance-limiting magnetohydrodynamic (MHD) instabilities on ASDEX Upgrade are discussed. In the conventional H-mode scenario, the main MHD performance limitation is found to be the neoclassical tearing mode (NTM). The onset of NTMs in ASDEX Upgrade scales with the poloidal ion gyroradius, in agreement with theoretical expectations. At higher values, NTMs occur in a more benign form, the frequently-interrupted-regime NTMs, which lead to a smaller confinement degradation than normal NTMs. Active control of NTMs by electron cyclotron current drive in the island has been demonstrated on ASDEX Upgrade. In advanced tokamak regimes with reversed shear, a variety of performance-limiting instabilities has been observed. The shear reversal zone can be unstable to double tearing modes or to infernal modes; both have been identified in ASDEX Upgrade. Due to the broad current profile in advanced tokamak discharges, the ideal external kink mode can be unstable at relatively low N 2; this is a main limitation to strongly reversed shear discharges with peaked pressure profiles. Finally, it is shown that fast-particle-driven modes such as fishbones can also have beneficial effects, such as providing stationary current profiles or triggering internal transport barriers.